Jump to ratings and reviews
Rate this book

Nonstandard Methods in Stochastic Analysis and Mathematical Physics

Rate this book
The Bulletin of the American Mathematical Society acclaimed this text as "a welcome addition" to the literature of nonstandard analysis, a field related to number theory, algebra, and topology. The first half presents a complete and self-contained introduction to the subject, and the second part explores applications to stochastic analysis and mathematical physics.
The text's opening chapters introduce all of the material needed later, including a nonstandard development of the calculus, aspects of singular perturbation theory related to ordinary differential equations, and applications to topology and functional analysis. A significant portion of the text focuses on applications of nonstandard analysis to probability theory. Starting with nonstandard measure theory, the treatment advances to probability problems that can be represented by hyperfinite nonstandard models. Applications of nonstandard analysis to stochastic processes are treated at length, and the authors present numerous applications to mathematical physics. Additional topics include hyperfinite Dirichlet forms and Markov processes, differential operators, and hyperfinite lattice models.

526 pages, Paperback

First published January 1, 1986

8 people want to read

About the author

Sergio Albeverio (born 17 January 1939) is a Swiss mathematician and mathematical physicist working in numerous fields of mathematics and its applications. In particular he is known for his work in probability theory, analysis (including infinite dimensional, non-standard, and stochastic analysis), mathematical physics, and in the areas algebra, geometry, number theory, as well as in applications, from natural to social-economic sciences.

He initiated (with Raphael Høegh-Krohn) a systematic mathematical theory of Feynman path integrals and of infinite dimensional Dirichlet forms and associated stochastic processes (with applications particularly in quantum mechanics, statistical mechanics and quantum field theory). He also gave essential contributions to the development of areas such as p-adic functional and stochastic analysis as well as to the singular perturbation theory for differential operators. Other important contributions concern constructive quantum field theory and representation theory of infinite dimensional groups. He also initiated a new approach to the study of galaxy and planets formation inspired by stochastic mechanics.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
1 (100%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.