Historically, regulations governing chemical use have often focused on widely used chemicals and acute human health effects of exposure to them, as well as their potential to cause cancer and other adverse health effects. As scientific knowledge has expanded there has been an increased awareness of the mechanisms through which chemicals may exert harmful effects on human health, as well as their effects on other species and ecosystems. Identification of high-priority chemicals and other chemicals of concern has prompted a growing number of state and local governments, as well as major companies, to take steps beyond existing hazardous chemical federal legislation. Interest in approaches and policies that ensure that any new substances substituted for chemicals of concern are assessed as carefully and thoroughly as possible has also burgeoned. The overarching goal of these approaches is to avoid regrettable substitutions, which occur when a toxic chemical is replaced by another chemical that later proved unsuitable because of persistence, bioaccumulation, toxicity, or other concerns. Chemical alternative assessments are tools designed to facilitate consideration of these factors to assist stakeholders in identifying chemicals that may have the greatest likelihood of harm to human and ecological health, and to provide guidance on how the industry may develop and adopt safer alternatives. A Framework to Guide Selection of Chemical Alternatives develops and demonstrates a decision framework for evaluating potentially safer substitute chemicals as primarily determined by human health and ecological risks. This new framework is informed by previous efforts by regulatory agencies, academic institutions, and others to develop alternative assessment frameworks that could be operationalized. In addition to hazard assessments, the framework incorporates steps for life-cycle thinking - which considers possible impacts of a chemical at all stages including production, use, and disposal - as well as steps for performance and economic assessments. The report also highlights how modern information sources such as computational modeling can supplement traditional toxicology data in the assessment process. This new framework allows the evaluation of the full range of benefits and shortcomings of substitutes, and examination of tradeoffs between these risks and factors such as product functionality, product efficacy, process safety, and resource use. Through case studies, this report demonstrates how different users in contrasting decision contexts with diverse priorities can apply the framework. This report will be an essential resource to the chemical industry, environmentalists, ecologists, and state and local governments. Table of Contents
The National Research Council (NRC) functions under the auspices of the National Academy of Sciences (NAS), the National Academy of Engineering (NAE), and the Institute of Medicine (IOM). The NAS, NAE, IOM, and NRC are part of a private, nonprofit institution that provides science, technology and health policy advice under a congressional charter signed by President Abraham Lincoln that was originally granted to the NAS in 1863. Under this charter, the NRC was established in 1916, the NAE in 1964, and the IOM in 1970. The four organizations are collectively referred to as the National Academies.
The mission of the NRC is to improve government decision making and public policy, increase public education and understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. The institution takes this charge seriously and works to inform policies and actions that have the power to improve the lives of people in the U.S. and around the world.
The NRC is committed to providing elected leaders, policy makers, and the public with expert advice based on sound scientific evidence. The NRC does not receive direct federal appropriations for its work. Individual projects are funded by federal agencies, foundations, other governmental and private sources, and the institution’s endowment. The work is made possible by 6,000 of the world’s top scientists, engineers, and other professionals who volunteer their time without compensation to serve on committees and participate in activities. The NRC is administered jointly by the NAS, NAE, and the IOM through the NRC Governing Board.
The core services involve collecting, analyzing, and sharing information and knowledge. The independence of the institution, combined with its unique ability to convene experts, allows it to be responsive to a host of requests.
The portfolio of activities includes:
* Consensus Studies: These comprehensive reports focus on major policy issues and provide recommendations for solving complex problems. * Expert Meetings and Workshops: By convening symposia, workshops, meetings, and roundtables, the NRC connects professionals as well as the interested public and stimulates dialogue on diverse matters. * Program and Research Management: At the request of state and federal agencies, the NRC manages and evaluates research programs, conducts program assessments, and reviews proposals. * Fellowships: The NRC administers several postdoctoral fellowship programs.
Free Scientific Information: Publishing more than 200 reports and related publications each year, the institution is one of the largest providers of free scientific and technical information in the world. Most of it is now on the Web at www.nap.edu.