This is a second edition of a well-known book stemming from the author's lectures on the theory of trace ideals in the algebra of operators in a Hilbert space. Because of the theory's many different applications, the book was widely used and much in demand. For this edition, the author has added four chapters on the closely related theory of rank one perturbations of self-adjoint operators. He has also included a comprehensive index and an addendum describing some developments since the original notes were published. This book continues to be a vital source of information for those interested in the theory of trace ideals and in its applications to various areas of mathematical physics.
Barry Simon is an eminent American mathematical physicist and the IBM Professor of Mathematics and Theoretical Physics (Emeritus) at Caltech, known for his prolific contributions in spectral theory, functional analysis, and nonrelativistic quantum mechanics (particularly Schrödinger operators), including the connections to atomic and molecular physics. He has authored more than 300 publications on mathematics and physics.
More particularly, his work has focused on broad areas of mathematical physics and analysis covering: quantum field theory, statistical mechanics, Brownian motion, random matrix theory, general nonrelativistic quantum mechanics (including N-body systems and resonances), nonrelativistic quantum mechanics in electric and magnetic fields, the semi-classical limit, the singular continuous spectrum, random and ergodic Schrödinger operators, orthogonal polynomials, and non-selfadjoint spectral theory.
Dr. Simon is a fellow of the American Mathematical Society (2012), a winner of the Henri Poincaré Prize (2012), a winner of the János Bolyai International Mathematical Prize (2015), a winner of the 2016 Steele Prize for Lifetime Achievement, and a winner of the Dannie Heineman Prize for Mathematical Physics (2018).