The theory of equations is not only a necessity in the subsequent mathematical courses and their applications, but furnishes an illuminating sequel to geometry, algebra and analytic geometry. Moreover, it develops anew and in greater detail various fundamental ideas of calculus for the simple, but important, case of polynomials. The theory of equations therefore affords a useful supplement to differential calculus whether taken subsequently or simultaneously. It was to meet the numerous needs of the student in regard to his earlier and future mathematical courses that the present book was planned with great care and after wide consultation. It differs essentially from the author’s Elementary Theory of Equations, both in regard to omissions and additions, and since it is addressed to younger students and may be used parallel with a course in differential calculus. Simpler and more detailed proofs are now employed. The exercises are simpler, more numerous, of greater variety, and involve more practical applications. This book throws important light on various elementary topics. For example, an alert student of geometry who has learned how to bisect any angle is apt to ask if every angle can be trisected with ruler and compasses and if not, why not. After learning how to construct regular polygons of 3, 4, 5, 6, 8 and 10 sides, he will be inquisitive about the missing ones of 7 and 9 sides. The teacher will be in a comfortable position if he knows the facts and what is involved in the simplest discussion to date of these questions, as given in Chapter III. Other chapters throw needed light on various topics of algebra. In particular, the theory of graphs is presented in Chapter V in a more scientific and practical manner than was possible in algebra and analytic geometry.
Leonard Eugene Dickson (January 22, 1874 – January 17, 1954) was an American mathematician. He was one of the first American researchers in abstract algebra, in particular the theory of finite fields and classical groups, and is also remembered for a three-volume history of number theory, History of the Theory of Numbers.
Even though the book is labeled "First Course..", I found it too basic. Neither is the prose good, questions good nor the content is rigorous enough. Had to go through, because it was the recommended reading in my college.