Number theory has a rich history. For many years it was one of the purest areas of pure mathematics, studied because of the intellectual fascination with properties of integers. More recently, it has been an area that also has important applications to subjects such as cryptography. An Introduction to Number Theory with Cryptography presents number theory along with many interesting applications. Designed for an undergraduate-level course, it covers standard number theory topics and gives instructors the option of integrating several other topics into their coverage. The "Check Your Understanding" problems aid in learning the basics, and there are numerous exercises, projects, and computer explorations of varying levels of difficulty.
Lawrence Clinton Washington (born 1951, Vermont) is an American mathematician, who specializes in number theory.
Washington studied at Johns Hopkins University, where in 1971 he received his B.A. and masters degree. In 1974 he earned his PhD at Princeton University under Kenkichi Iwasawa with thesis Class numbers and Z_p extensions.[1] He then became an assistant professor at Stanford University and from 1977 at the University of Maryland, where he became in 1981 an associate professor and in 1986 a professor. He held visiting positions at several institutions, including IHES (1980/81), Max-Planck-Institut für Mathematik (1984), the Institute for Advanced Study (1996), and MSRI (1986/87), as well as at the University of Perugia, Nankai University and the State University of Campinas.
Washington wrote a standard work on cyclotomic fields. He also worked on p-adic L-functions. He wrote a treatise with Allan Adler on their discovery of a connection between higher-dimensional analogues of magic squares and p-adic L-functions.[2] Washington has done important work on Iwasawa theory, Cohen-Lenstra heuristics, and elliptic curves and their applications to cryptography.
In Iwasawa theory he proved with Bruce Ferrero in 1979 a conjecture of Kenkichi Iwasawa, that the \mu-invariant vanishes for cyclotomic Zp-extensions of abelian number fields (Theorem of Ferrero-Washington).[3]
I'm not sure why this book has such a low rating. As far as textbooks go, this one is very good. The writing is generally clear, the formatting readable, and the applications interesting. Certainly there are books with more rigor and there are books with more attention to applications, but for a first course textbook this one is fine.