Jump to ratings and reviews
Rate this book

Extremes and Related Properties of Random Sequences and Processes

Rate this book
Classical Extreme Value Theory-the asymptotic distributional theory for maxima of independent, identically distributed random variables-may be regarded as roughly half a century old, even though its roots reach further back into mathematical antiquity. During this period of time it has found significant application-exemplified best perhaps by the book Statistics of Extremes by E. J. Gumbel-as well as a rather complete theoretical development. More recently, beginning with the work of G. S. Watson, S. M. Berman, R. M. Loynes, and H. Cramer, there has been a developing interest in the extension of the theory to include, first, dependent sequences and then continuous parameter stationary processes. The early activity proceeded in two directions-the extension of general theory to certain dependent sequences (e.g., Watson and Loynes), and the beginning of a detailed theory for stationary sequences (Berman) and continuous parameter processes (Cramer) in the normal case. In recent years both lines of development have been actively pursued.

348 pages, Paperback

First published March 2, 1983

1 person is currently reading
5 people want to read

About the author

M. R. Leadbetter

4 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.