Jump to ratings and reviews
Rate this book

Orbital Mechanics using Python and R

Rate this book
This book describes the mechanics or physics of resident space objects (RSOs) in orbits due to the gravitational force of the central mass, like the Earth. In other words, it's about the obit of satellites and other RSOs. Part 1 applies the laws of Newton and Kepler, considers 2-body and N-body problems, and explores Jacobi's constant and Lagrangian points. Using calculus, geometry, trigonometry, and algebra, it develops the equations of orbits and motion, transforms reference frames to other frames, like Cartesian to True Equator, Mean Equinox (TEME). The book investigates orbital maneuvers with applications like Hohmann transfers, and interplanetary trajectories hyperbolic departures. We develop the orbital parameters, like the semilatus rectum, mean anomaly, eccentricity, inclination, and argument of periapsis. Part 2 explores and implements the NORAD two-line element (TLE) set and uses the content to propagate state vectors( position and velocity) to plot orbits and ground tracks. We employ the SGD4 (LEO) propagator and SPD4 (deep space) propagator to validate orbits against Revisiting Spacetrack Report #3. We then use the results to project orbits forward in time and to simulate from selected orbital elements.

640 pages, Hardcover

Published November 2, 2022

About the author

Jeffrey Strickland

41 books2 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
1 (100%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.