As engineering structures and their environments become more diverse and complex, it is not enough that the engineer be adept at applying the classical methods of structural analysis. More importantly, he must be aware of the limitations of the underlying theories and be able to make intelligent judgments about the validity of the basic assumptions. It is hoped that, by starting with a discussion of the classical theory of elasticity, this text will make clear the applicability and limitations of linear structural mechanics. The emphasis of the book is on the development and applications of work and energy methods. The principles of virtual work, complementary virtual work, and various energy theorems derived there from are used to study the behavior of linearly elastic structures. While no attempt is made to cover the many ad hoc techniques which are appropriate for special types of structures, the basic force and displacement approaches treated herein have a wide range of application and are particularly adaptable to machine computation. This book was developed from class notes used in teaching a two-term introductory course in structural mechanics at Princeton University. Portions of the notes have also been used in advanced strength-of-materials and mechanical vibration courses at the University of Kentucky. Those enrolled in the courses include juniors, seniors, and beginning graduate students from the departments of aerospace, mechanical, and civil engineering, and engineering mechanics. It is presumed that the students have had the normal undergraduate courses in engineering mechanics and have been exposed to ordinary differential equations. Following an introductory chapter, the book is divided into three parts.