**ISBN-10:**

**Author:**

**Publisher:**

**File Size:**1154 KB

**File Format:**Pdf

**Read Count:**2598999

This introduction to computational number theory is centered on a number of problems that live at the interface of analytic, computational and Diophantine number theory, and provides a diverse collection of techniques for solving number- theoretic problems. There are many exercises and open research problems included.

Since it was first published three decades ago, Excursions Into Mathematics has been one of the most popular mathematical books written for a general audience. Taking the reader for short "excursions" into several specific disciplines of mathematics, it makes mathematical concepts accessible to a wide audience. The Millennium Edition is updated with current research and new solutions to outstanding problems that have been discovered since the last edition was printed, such as the solution to the well-known "four-color problem." Excursions Into Mathematics: The Millennium Edition is an exciting revision of the original, much-loved classic. Everyone with an interest in mathematics should read this book.

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Excursions in Modern Mathematics introduces you to the power of math by exploring applications like social choice and management science, showing that math is more than a set of formulas. Ideal for an applied liberal arts math course, Tannenbaum’s text is known for its clear, accessible writing style and its unique exercise sets that build in complexity from basic to more challenging. The Eighth Edition offers more real data and applications to connect with today’s readesr, expanded coverage of applications like growth, and revised exercise sets.

Popular account ranges from counting to mathematical logic and covers many concepts related to infinity: graphic representation of functions; pairings, other combinations; prime numbers; logarithms, circular functions; more. 216 illustrations.

This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly anything but superficial, as the present book also offers new theoretical insights into the methodology of the development of mathematics (proof-processing), with implications for the historiography of mathematics.

These marvelous, stimulating games for the mind include geometric paradoxes, cube and color arrangement puzzles, calendar paradoxes, much more. Detailed solutions prepare readers for puzzles of even greater complexity.

This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. Excursions in the History of Mathematics was written with several goals in mind: to arouse mathematics teachers’ interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses.

The games presented here are mainly 2-person strategic board games and Solitaire Puzzles, when alone. There is a welcome difference between strategic board games and puzzles. A puzzle has a solution and once you’ve solved it, it is not that interesting any more. A strategy game can be played again and again. Chess, the “King of all Board Games”, is not included here as it forms a subject by itself, but there are a few pre-chess puzzles. Bridge, the “Queen of all Card Games”, is also not included as Card games and Dice games involve a certain element of luck; the games here are not based on chance or probability. Apart from Games and Puzzles, there is a small chapter on Mathematical Excursions. These are explorations of non mathematicians like me into the ways of thinking and understanding patterns that mathematicians visualise and analyse for sheer pleasure without any monetary or practical benefit. How can a chess knight’s move over a chess board be beneficial to anybody? But this exploration has been going on for 2000 years. Also, whereas Pythagoras’ Theorem was of great benefit to society, what will proving Fermat’s Theorem accomplish? For a mathematician, the overriding influence of numbers becomes his aim in life.

From Jim Holt, the New York Times bestselling author of Why Does the World Exist?, comes an entertaining and accessible guide to the most profound scientific and mathematical ideas of recent centuries in When Einstein Walked with Gödel: Excursions to the Edge of Thought. Does time exist? What is infinity? Why do mirrors reverse left and right but not up and down? In this scintillating collection, Holt explores the human mind, the cosmos, and the thinkers who’ve tried to encompass the latter with the former. With his trademark clarity and humor, Holt probes the mysteries of quantum mechanics, the quest for the foundations of mathematics, and the nature of logic and truth. Along the way, he offers intimate biographical sketches of celebrated and neglected thinkers, from the physicist Emmy Noether to the computing pioneer Alan Turing and the discoverer of fractals, Benoit Mandelbrot. Holt offers a painless and playful introduction to many of our most beautiful but least understood ideas, from Einsteinian relativity to string theory, and also invites us to consider why the greatest logician of the twentieth century believed the U.S. Constitution contained a terrible contradiction—and whether the universe truly has a future.

These and hundreds of other terms wait to be discovered within the pages of this mathematical and etymological treasure chest.

Too often math gets a bad rap, characterized as dry and difficult. But, Alex Bellos says, "math can be inspiring and brilliantly creative. Mathematical thought is one of the great achievements of the human race, and arguably the foundation of all human progress. The world of mathematics is a remarkable place." Bellos has traveled all around the globe and has plunged into history to uncover fascinating stories of mathematical achievement, from the breakthroughs of Euclid, the greatest mathematician of all time, to the creations of the Zen master of origami, one of the hottest areas of mathematical work today. Taking us into the wilds of the Amazon, he tells the story of a tribe there who can count only to five and reports on the latest findings about the math instinct—including the revelation that ants can actually count how many steps they’ve taken. Journeying to the Bay of Bengal, he interviews a Hindu sage about the brilliant mathematical insights of the Buddha, while in Japan he visits the godfather of Sudoku and introduces the brainteasing delights of mathematical games. Exploring the mysteries of randomness, he explains why it is impossible for our iPods to truly randomly select songs. In probing the many intrigues of that most beloved of numbers, pi, he visits with two brothers so obsessed with the elusive number that they built a supercomputer in their Manhattan apartment to study it. Throughout, the journey is enhanced with a wealth of intriguing illustrations, such as of the clever puzzles known as tangrams and the crochet creation of an American math professor who suddenly realized one day that she could knit a representation of higher dimensional space that no one had been able to visualize. Whether writing about how algebra solved Swedish traffic problems, visiting the Mental Calculation World Cup to disclose the secrets of lightning calculation, or exploring the links between pineapples and beautiful teeth, Bellos is a wonderfully engaging guide who never fails to delight even as he edifies. Here’s Looking at Euclid is a rare gem that brings the beauty of math to life.

This book argues that we can only understand transformations of nature studies in the Scientific Revolution if we take seriously the interaction between practitioners (those who know by doing) and scholars (those who know by thinking). These are not in opposition, however. Theory and practice are end points on a continuum, with some participants interested only in the practical, others only in the theoretical, and most in the murky intellectual and material world in between. It is this borderland where influence, appropriation, and collaboration have the potential to lead to new methods, new subjects of enquiry, and new social structures of natural philosophy and science. The case for connection between theory and practice can be most persuasively drawn in the area of mathematics, which is the focus of this book. Practical mathematics was a growing field in early modern Europe and these essays are organised into three parts which contribute to the debate about the role of mathematical practice in the Scientific Revolution. First, they demonstrate the variability of the identity of practical mathematicians, and of the practices involved in their activities in early modern Europe. Second, readers are invited to consider what practical mathematics looked like and that although practical mathematical knowledge was transmitted and circulated in a wide variety of ways, participants were able to recognize them all as practical mathematics. Third, the authors show how differences and nuances in practical mathematics typically depended on the different contexts in which it was practiced: social, cultural, political, and economic particularities matter. Historians of science, especially those interested in the Scientific Revolution period and the history of mathematics will find this book and its ground-breaking approach of particular interest.

Edited by two of the most respected scholars in the field, this milestone reference combines "facts-fronted" fast access to biographical details with highly readable accounts and analyses of nearly 3000 scientists' lives, works, and accomplishments. For all academic and public libraries' science and women's studies collections.

With wit and clarity, the authors progress from simple arithmetic to calculus and non-Euclidean geometry. Their subjects: geometry, plane and fancy; puzzles that made mathematical history; tantalizing paradoxes; more. Includes 169 figures.