More on this book
Community
Kindle Notes & Highlights
Read between
July 31 - August 18, 2017
There were certain things I didn’t like, such as tipping. I thought we should be paid more, and not have to have any tips. But when I proposed that to the boss, I got nothing but laughter. She told everybody, “Richard doesn’t want his tips, hee, hee, hee; he doesn’t want his tips, ha, ha, ha.” The world is full of this kind of dumb smart-alec who doesn’t understand anything.
I’m completely dazed. Worse, I don’t know what the symbols on the blueprint mean!
I told him you try to find out whether it’s a valve or not.
Most of the trouble was the big shots coming in all the time and saying, “You’re going to break something!”
Well, Mr. Frankel, who started this program, began to suffer from the computer disease that anybody who works with computers now knows about. It’s a very serious disease and it interferes completely with the work. The trouble with computers is you play with them. They are so wonderful. You have these switches—if it’s an even number you do this, if it’s an odd number you do that—and pretty, soon you can do more and more elaborate things if you are clever enough, on one machine.
if you’ve ever worked with computers, you understand the disease—the delight in being able to see how much you can do.
I went for a walk outside. Maybe I was fooling myself, but I was surprised how I didn’t feel what I thought people would expect to feel under the circumstances. I wasn’t delighted, but I didn’t feel terribly upset, perhaps because I had known for seven years that something like this was going to happen.
He was doing what I was supposed to be good at, ten times better. That was quite a lesson to me.
Von Neumann gave me an interesting idea: that you don’t have to be responsible for the world that you’re in. So I have developed a very powerful sense of social irresponsibility as a result of Von Neumann’s advice. It’s made me a very happy man ever since. But it was Von Neumann who put the seed in that grew into my active irresponsibility!
I was always dumb in that way. I never knew who I was talking to. I was always worried about the physics. If the idea looked lousy, I said it looked lousy. If it looked good, I said it looked good. Simple proposition.
I would go along and I would see people building a bridge, or they’d be making a new road, and I thought, they’re crazy, they just don’t understand, they don’t understand. Why are they making new things? It’s so useless. But, fortunately, it’s been useless for almost forty years now, hasn’t it? So I’ve been wrong about it being useless making bridges and I’m glad those other people had the sense to go ahead.
I love puzzles. One guy tries to make something to keep another guy out; there must be a way to beat it!
Nothing happens because there’s not enough real activity and challenge: You’re not in contact with the experimental guys. You don’t have to think how to answer questions from the students. Nothing!
you can think about the elementary things that you know very well. These things are kind of fun and delightful. It doesn’t do any harm to think them over again. Is there a better way to present them? Are there any new problems associated with them? Are there any new thoughts you can make about them? The elementary things are easy to think about; if you can’t think of a new thought, no harm done; what you thought about it before is good enough for the class. If you do think of something new, you’re rather pleased that you have a new way of looking at it.
During this period I would get offers from different places—universities and industry—with salaries higher than my own. And each time I got something like that I would get a little more depressed. I would say to myself, “Look, they’re giving me these wonderful offers, but they don’t realize that I’m burned out! Of course I can’t accept them. They expect me to accomplish something, and I can’t accomplish anything! I have no ideas . . .”
It was a brilliant idea: You have no responsibility to live up to what other people think you ought to accomplish. I have no responsibility to be like they expect me to be. It’s their mistake, not my failing.
Then I had another thought: Physics disgusts me a little bit now, but I used to enjoy doing physics. Why did I enjoy it? I used to play with it. I used to do whatever I felt like doing—it didn’t have to do with whether it was important for the development of nuclear physics, but whether it was interesting and amusing for me to play with. When I was in high school, I’d see water running out of a faucet growing narrower, and wonder if I could figure out what determines that curve. I found it was rather easy to do. I didn’t have to do it; it wasn’t important for the future of science; somebody
...more
It was effortless. It was easy to play with these things. It was like uncorking a bottle: Everything flowed out effortlessly. I almost tried to resist it! There was no importance to what I was doing, but ultimately there was. The diagrams and the whole business that I got the Nobel Prize for came from that piddling around with the wobbling plate.
it was interesting to know that things worked much differently from how I was brought up.
You see, I get such fun out of thinking that I don’t want to destroy this most pleasant machine that makes life such a big kick. It’s the same reason that, later on, I was reluctant to try experiments with LSD in spite of my curiosity about hallucinations.
When you’re away and you’ve got nothing but paper, and you’re feeling lonely, you remember all the good things and you can’t remember the reasons you had the arguments.
My theory is that it’s like a person who speaks French who comes to America. At first they’re making all kinds of mistakes, and you can hardly understand them. Then they keep on practicing until they speak rather well, and you find there’s a delightful twist to their way of speaking—their accent is rather nice, and you love to listen to it.
So, you see, they could pass the examinations, and “learn” all this stuff, and not know anything at all, except what they had memorized.
I taught a course at the engineering school on mathematical methods in physics, in which I tried to show how to solve problems by trial and error. It’s something that people don’t usually learn, so I began with some simple examples of arithmetic to illustrate the method. I was surprised that only about eight out of the eighty or so students turned in the first assignment. So I gave a strong lecture about having to actually try it, not just sit back and watch me do it.
It was a kind of one-upmanship, where nobody knows what’s going on, and they’d put the other one down as if they did know. They all fake that they know, and if one student admits for a moment that something is confusing by asking a question, the others take a high-handed attitude, acting as if it’s not confusing at all, telling him that he’s wasting their time.
“Publicity is a whore!”
Three or four different words for one idea, because when I’m doing it, it’s miserable; when you’re doing it, it’s elegant.
At that particular time I was not really quite up to things: I was always a little behind. Everybody seemed to be smart, and I didn’t feel I was keeping up.
“No,” she said, “what you mean is not that you can’t understand it, but that you didn’t invent it. You didn’t figure it out your own way, from hearing the clue. What you should do is imagine you’re a student again, and take this paper upstairs, read every line of it, and check the equations. Then you’ll understand it very easily.” I took her advice, and checked through the whole thing, and found it to be very obvious and simple. I had been afraid to read it, thinking it was too difficult.
there’s a principle that a point on the edge of the range of the data—the last point—isn’t very good, because if it was, they’d have another point further along.
“Artists are lost: they don’t have any subject! They used to have the religious subjects, but they lost their religion and now they haven’t got anything. They don’t understand the technical world they live in; they don’t know anything about the beauty of the real world—the scientific world—so they don’t have anything in their hearts to paint.” Jerry would reply that artists don’t need to have a physical subject; there are many emotions that can be expressed through art. Besides, art can be abstract. Furthermore, scientists destroy the beauty of nature when they pick it apart and turn it into
...more
Everything that I thought was a mistake, he used to teach me something in a positive way. He never said it was wrong; he never put me down. So I kept on trying, and I gradually got a little bit better, but I was never satisfied.
When I tried to show him how an electromagnet works by making a little coil of wire and hanging a nail on a piece of string, I put the voltage on, the nail swung into the coil, and Jerry said, “Oohl It’s just like fucking!” So that was the end of that.
I realized I was way out of my depth.
The teacher doesn’t want to push you in some particular direction. So the drawing teacher has this problem of communicating how to draw by osmosis and not by instruction, while the physics teacher has the problem of always teaching techniques, rather than the spirit, of how to go about solving physical problems.
What I got out of that story was something still very new to me: I understood at last what art is really for, at least in certain respects. It gives somebody, individually, pleasure. You can make something that somebody likes so much that they’re depressed, or they’re happy, on account of that damn thing you made! In science, it’s sort of general and large: You don’t know the individuals who have appreciated it directly. I understood that to sell a drawing is not to make money, but to be sure that it’s in the home of someone who really wants it; someone who would feel bad if they didn’t have
...more
What they’re talking about is concentrated energy being transformed into more dilute forms, which is a very subtle aspect of energy. Energy
In summary, the idea is to try to give all of the information to help others to judge the value of your contribution; not just the information that leads to judgment in one particular direction or another.
We’ve learned from experience that the truth will out. Other experimenters will repeat your experiment and find out whether you were wrong or right. Nature’s phenomena will agree or they’ll disagree with your theory. And, although you may gain some temporary fame and excitement, you will not gain a good reputation as a scientist if you haven’t tried to be very careful in this kind of work. And it’s this type of integrity, this kind of care not to fool yourself, that is missing to a large extent in much of the research in cargo cult science.
The first principle is that you must not fool yourself—and you are the easiest person to fool.
If you’ve made up your mind to test a theory, or you want to explain some idea, you should always decide to publish it whichever way it comes out. If we only publish results of a certain kind, we can make the argument look good. We must publish both kinds of results.
So I have just one wish for you—the good luck to be somewhere where you are free to maintain the kind of integrity I have described, and where you do not feel forced by a need to maintain your position in the organization, or financial support, or so on, to lose your integrity. May you have that freedom.

