Jump to ratings and reviews
Rate this book

Exploratory Data Analysis Using R

Rate this book
Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" – good, bad, and ugly – features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data.

The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing.

The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available.

About the

Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).

562 pages, Kindle Edition

Published May 4, 2018

1 person is currently reading
7 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (100%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
Displaying 1 of 1 review
230 reviews6 followers
July 14, 2019
I've read this multiple times that a data scientist spends about 60% of time in understanding and cleansing the data that is being worked on. With this being the context, it becomes crucial to know how to perform initial analysis of the data. This book helps unravel those steps for us.

There are a list of preliminary questions that is provided. Quite possibly, it can act as a great reference for enthusiasts and professionals alike. The book distinguishes exploratory and explanatory graphics.

It lists the various types of charts and suggests where they can be used appropriately. Additionally, it also goes in-depth of QQ plot, Sunflower plot and Mosaic plot. A note on PCA and ROC curve was indeed informative.

I found this book quite interesting and did enjoy reading it from start to finish.
Displaying 1 of 1 review

Can't find what you're looking for?

Get help and learn more about the design.